Canonization for Full Untyped-XQuery

Decreasing complexity of XQuery manipulation

Nicolas Travers Tuyet Tram Dang Ngoc
February 6, 2007

Abstract

XQuery is a powerful query language to query XML documents. Un-
fortunately, its richness of functionalities makes its complex to evaluate.
In [2], Chen et al. proposed to rewrite XQuery expressions in ”canonical
XQuery”. However, their solution is restricted to a rather limited sub-
set of XQuery and does not support complex XQuery expressions. We
propose in this paper to extend the work of [2] to canonize the whole
untyped-XQuery language.

Keywords: XQuery, canonization

Rapport de recherche

1 Introduction

The XQuery [9] query language defined by the W3C has proved to be an ex-
pressive and powerful query language to query XML data both on structure and
content, and to make transformation on the data. In addition, its query func-
tionalities come from both the database community, and the text community.
From the database languages, XQuery has inherited from all data manipulation
functionnalities such as selection, join, ordering, set manipulation, aggregation,
nesting, unnesting, ordering and navigation in tree structure. From the docu-
ment community functions as text search, document reconstruction, structure
and data queries have been added.

The XQuery query language is expressed using the famous FLWOR (FOR
...exp... LET ...exp... WHERE ...exp... ORDER ...exp... RETURN...exp...)
expression form. But this simple form is not so simple: thus, any expression ezp
can also be recursively a FLWOR expression but also a full XPath expression.

Quory A Quory B
declare function local:f(8§doc as xs:string) as element()
let 811 := for $f1 in doc("rev.xml”)/review
for $f2 in doc(”$doc”)/catalog
return ($f1 | $£2)
for $£3 in $11
for $x in $£3/book
declare function local:f($doc as xs:string) as element() let $12 := for $y in $x/comments
where contains ($y, "Excellent”)
for $x in (doc(’rev.xml”)/review|doc(”$doc”)/catalog) |[. return $y
contains("Robin Hobb")]/book/[.//price > 15] let $13 := orderby ($x, $x/@isbn)
where some $y in $x/comments for $ordered in $13
satisfies contains ($y, "Excellent”) let $14 := count ($ordered/title)
order by $x/@isbn let $15 := for $z in doc("books.xml”)/book
return let $16 := $z/title
<livre> where
{$x/@isbn} $z/@isbn = $ordered/@isbn
<prix> {$x//price/text()} < /price> and $z/position () == 3

if (count($x/title) > 2)
then {for $z in doc(”"books.xml”)/book
where $z/@isbn = $x/@isbn
return <titre> { ($z/title)[3]} < /titre>}
else <titre/>

}
< /livre>

return <titre> {$16} < /titre>
where
contains($f3, "Robin Hobb”)
and $x//price > 15
and count ($12) > 0
return
<livre>
{$ordered/@isbn}
<prix> {$ordered//price/text()} < /price>

if ($14 > 2)
then {$15}
else <titre/>

}
< /livre>

Table 1: Two equivalent XQuery queries

In Table 1, Query A is a complex XQuery expression that defines a function
that selects books with constraints on price, keywords and comments and that
returns price and isbn depending on number of returned titles. This query
contains XPath Constraint, Filter, Quantifier, Document construction, Nesting,
Aggregate, Conditional and Set operation, Ordering, Sequences and Functions.

However, using XQuery specifications, some XQuery expressions forms are
found to be equivalents (ie. give the same result independantly of the set of
input documents). Thus, the Query B in Table 1 is an equivalent form of the
previous Query A. Ths whole untyped-XQuery grammar can be found on 16.

XQuery can generate a large set of equivalent queries. In order to simplify
XQuery queries studies, it is useful to identify sets of equivalent queries and

Rapport de recherche

associate them a unique XQuery query called : Canonical query.

[2] has shown that some forms of XQuery expressions could be rewritten to
one generic form called "canonized XQuery”. Rules that transform an XQuery
expression to an equivalent expression with a generic form (said “canonized”)
have also been demonstrated. We will see in next section that [2] only sup-
ports a subset of XQuery formulation and do not deal with all type of XQuery
expressions (set, conditional, sequential, scheduling etc.) The contribution of
our report is to extend the work of [2] in order to canonize any XQuery ex-
pressions. We extend the XQuery definition domain by defining new additional
canonization rules to meet the whole untyped-XQuery specification. Thus, we
demonstrate the following rules :

1. Each of the Order by clauses are declared in a let clause.

2. Two FLWOR expressions connected by a set operator are declared in a
let clause and are each assigned to a variable. The result - which is a set
operation between the two previous variables - is assigned to a variable.

3. Nested expressions in conditional expressions If/Then/Else are declared in
a let clause and are each assigned to a variable. The conditional expression
is rewritten using variables previously defined.

4. Each sequential expressions enclosed in parentheses on a set of values or
XPaths is tranformed into a let clause and is assigned to a variable.

The rest of this report is organized as follows. The next section is about
related works, and in particular canonical XQuery introduced by [2]. Section
3 focuses on our extension of [6] and [2]’s work to the canonization of the full
untyped XQuery. Section 4 reports on validation of our canonization rules and
finally, section 5 concludes.

2 Related Work

In order to simplify the XQuery definition, [4] and [2] propose query rewriting
rules. Those rules prepare the query in a canonized form while preserving the
results.

2.1 XPath

[6] proposes some equivalences between XPath axis. Those equivalences defines
XPaths in a single form with child, descendant expressions. Every ”or-self” axis
are bound to a union operator. A "parent” or "ancestor” axis are bound to a
new variable with an ”exist()” function an child/descendant. Table 2 illustrates

PR SM

Rapport de recherche

2.2 NEXT 4

some XPath axis canonization.

| XPath with specific axis Canonized XPath

for $i in //a/parent::b for $iin //b

where exists ($i/a)
for $iin //a/ancestor::b for $iin //b

where exists ($i//a)
for $i in //a/descendant-or-self::b for $iin //a(//b | /.)
for $i in //a/ancestor-or-self::b for $k1in //b

for $k2 in $k1//a

for $i in ($k1 | $k2)

Table 2: XPath canonization

2.2 NEXT

Transformation rules suggested by [4] are based on queries minimization of [1]
and [7] in NEXT. They take as a starting point the group-by used in the OQL
language, named OptXQuery. In order to eliminate redundancies while scan-
ning elements, NEXT restructures the requests more efficiently to process nested
queries. We do not take into account those transformation rules since [2] pro-
poses an unnesting transformation rule that creates a ”let clause (and not a
group by from OQL).

2.3 GTP

Works on GTP [2] propose other transformation rules for XQuery queries. Aim-
ing at structuring queries, XQuery queries are transformed in a canonical form of
XQuery. Canonical queries’ grammar is presented in table 3. This form is more
restricted than XQuery specifications, but it allows us to cover a consequent
subset of XQuery.

expr ::= (for $fvy in rangey, ... , $fv,, in range,,)?
(let $lvy =7 expry)", ..., $lv, :="(" expry, 7)”)7

(where ¢)?

return

<result>

< tagy >{arg1}< [tagr > ... < tag, >{arg,}< [tagn >
< /result>

Table 3: Canonical XQuery in GTPs

Thus, we obtain a specific syntax that enables us identifying XQuery main
characteristics. These canonized queries must match the following requirements:

e XPath expressions should not contain building filters.

SM

Rapport de recherche

2.3

GTP 5

expr expressions are XPaths or canonical XQuery queries.

Expression ¢ is a Boolean formula created from a set of atomic conditions
with XPaths and constants values.

Each range expression must match the definition of a field of value.
Each range expression is an XPath or an aggregate function.

Each aggregate function can be only associated to a let clause.

In Chen’s thesis [2], it is shown that thanks to XQuery specifications, XQuery
queries can always be translated into a canonical form. Lemmas enumerated
below show transformations individually. Two queries are said to be equivalent
if the query and the canonical query have the same evaluation.

1.

XPath expressions can contain restrictions, contained in filters (between
”[17). Those filters can be replaced by defining new variables on which
are associated it(s) predicate(s) (within the filter) into the where clause.
Table 4 illustrates a transformation of a filter.

| XQuery query | Canonized form

for 8i in doc(”cat.xml”)/catalog/book
[@ishn="12351234"] /title
return {$i}

for $i in $i/title

return {$i}

for $j in doc("cat.xml”)/catalog/book

where $j/@isbn = 712351234”

Table 4: Query with filters

. A FLWR expression with nested queries can be rewritten in an equivalent

one such in which FLWR expressions are declared in let clauses. The new
declared variable is used instead of the nested query. An example given
in table 5 redefined a nested query in the let clause: "let $I: = (...)”, and
the return value becomes $t.

| XQuery query | Canonized form
for §i in doc("cat.xml”) /catalog/book for $i in doc("cat.xml”)/catalog/book
return
<livre> let $1 :=
ok e 5| (50 S e (53
</livre>

Table 5: Nested queries transformation

PR SM

Rapport de recherche

2.3 GTP 6

3. A FLWR expression with a quantifier "every” can be transformed into
an equivalent one using an expression of quantity. XQuery syntax de-
fines quantifiers ”every” as a predicate associated to the Boolean formula
. The quantifier checks if each selected trees verify the predicate. The
query showed in table 6 returns all books for which all prices! are strictly
higher than 15 euros. In order to simplify and to canonize this query, it is
necessary to create a "let” clause containing books whose prices are lower
or equal than 15 euros. If the number of selected trees is higher than 0,
then the selected tree ($i) does not satisfy the quantifier “every” and is not
returned.

| XQuery query | Canonized form

for $i in doc(’cat.xml”)/catalog/book
let 81 :=
(for $j in $i/price
where $j <= 15
return {$j})
where count($l) = 0
return {$i}

for $i in doc("cat.xml”)/catalog/book
where every $s in $i/price

satisfies $s > 15
return {$i}

Table 6: Transformation of a quantifier "every”

4. In the same way, a FLWR expression, containing a quantifier "some”, can
be transformed. It is the same transformation, but the tree is selected if
there is at least a tree that checks the condition (in the ”let” clause).

5. Aggregates functions defined in FLWR expressions can be rewritten in ”/et”
clauses, associated to a new variable. This variable replaces the aggregate
function at the previous location.

Table 7 shows transformation of a nested query, an aggregate and a filter.

1We suppose that a book can have several prices

PR SM

Rapport de recherche

| XQuery query | Canonized form

for $x in doc("rev.xml”) /review,
$y in $x/book
let $11 = (

for $y in doc("rev.xml”) /review
[. contains ("daulphin”)]/book

where
; for $z in collection ("books”)/book
TY/prlce > 15 let $12 = count ($Z/t1tle)
fr§§$t> where $z/Qisbn = $y/@isbn
{$y/Qisbn} return {$lo}
{8y /price}

where $x contains ("dauphin”)

<nb_titles>{ and $y/price > 15

for $z in collection ("books”)/book return
where $z/Qisbn = $y/Qisbn <result>

return .
{count ($z/title)} {$x/@isbn}

. {8y /price}
< /r}ej 1{ lr;l;_tltles> <nb_titles>{$11} < /nb_titles>
< /result>

Table 7: Canonization of a nested query, an aggregate Function and a filter

As we can see, rules minimization [4] and canonization [6] [2] helps at trans-
forming XQuery queries into a canonical form. The [2] approach is more likely
to deal with our needs, but the canonical form does not handle all XQuery
requirements, such as: Ordering, Set operators, Conditional operators,
Sequences and Functions declaration.

XQuery queries can be canonized in a simpler form using previous trans-
lation rules. However the lack of ordering operators (order by), set operators
(union, except, intersect), conditional operators (if/then/else) and sequential
expressions (with parenthesis) reduce tremendously the XQuery expressiveness.
We propose in the next section to extend canonization of XQuery.

3 XQuery Canonization

As we saw in the previous section, transformation rules modify a query in a
canonical form. Since, those canonical queries only cover a subset of XQuery
queries, we propose to cover much more XQuery queries. Thus, we add new
canonization rules that handle all untyped XQuery queries.

In [2], four categories of expression are missing: ordering, set operators,
conditional operators, sequences and function declaration. Each one of these
expressions handles sets of trees. We thus propose to add canonization rules for
each of those expressions.

PR SM

Rapport de recherche

3.1 Ordering (Order by) 8

3.1 Ordering (Order by)

Ordering classifies XML trees according to one or more given XPaths. Trees’
order is given by nodes ordering on values, coming from XPaths. This operation
takes a set of trees and produces a new ordered set.

To obtain a canonical query, the order clause "orderby” must be transformed
into a let clause. In fact, ordering is applied after evaluation of for, let and
where clauses, and before the return clause. Thus, results produced by the
preceding operations can be processed by an aggregate function: ’orderby’. This
function orders each XML trees with a given XPath. Then, this aggregate
function is put into a let clause, as specified in the canonical form. The new
variable replaces all variables contained into the return clause.

Lemma 3.1 : Ordering

An XQuery query containing an Order By clause can be transformed into an
equivalent query without this clause. It is declared in a let clause with an ag-
gregate function orderby() whose parameters are ordering fields with XPaths,
and the ascending/descending sorting information. The orderby function re-
sults a set of sorted trees. The new linked variable replaces original used
variables into the return clause. To keep the XML trees flow, a for clause is
added on the given variable.

Proof: Take a query Q. If @ does not contain an orderby clause, it is then
canonical (for the order criteria).

Let us suppose that @ has n orderby clauses: order by $vary /pathy, $var,, /path,.
Using the transformations lemmas on XPaths, path, are in a canonical form.
The query @ is said to be canonical if the orderby clause is replaced by a let
clause with an aggregate function orderby, and each transformed corresponding
variable.

It is then necessary to study 3 cases of orderby clause:

1. If a variable is declared: order by $vary /path; return $var,/paths, then:
let $t: = orderby ($vary, $vary /pathy) return $t/paths;

2. If two variables (or more) are declared, but identical: order by $var, /pathy,
$vary /pathy return $vary /paths, then: let $t: = orderby ($vary, $vary /pathy
$vary /paths) return $t/paths;

3. If two variables (or more) are declared, but different: order by $var, /path;,
$vars /pathy return {$var, /paths, $vars/pathy }, then: let $t: = or-
derby ($vary, $vary /pathy), $ta: = orderby ($vars, $vars/paths) return
{$t1/paths, $tz/pathy }.

Then, the (n + 1) orderby expressions in query @ can be written with n
orderby expression, since a query with no orderby expression is canonical, then
recursively, @ can be written without orderby clause.

SM

Rapport de recherche

3.2 Set operators 9

Here an example of an orderby clause canonization:

| XQuery query | Canonized form

for $i in /catalog/book

let $j := orderby (81, $i/title)
for $k in $j

return $k/title

for $i in /catalog/book
order by $i/title
return $i/title

Table 8: Orderby canonization example

In table 8, the for clause selects a set of book elements contained in catalog.
Then, it is sorted by values of the title element, and linked to the $j variable.
The orderby clause canonization gives a let clause: $j, whose ordering function
orderby() takes the variable $i for the input set, and $i/title to sort. The result
set is then defined into the for clause (8k), in order to build a flow of XML trees.
This new variable is used in the return clause by modifying XPaths ($k/title
instead of $i/title). Then, we obtain a canonized query without orderby clauses.

3.2 Set operators

Set operators express unions, differences or intersections on sets of trees. It takes
two or more sets of trees to produce a single set. A union operator gathers all
sets of trees, a difference operator removes trees of the second set from the first
one and an intersection operator keeps only trees that exists in the two sets.

Lemma 3.2 : Set Operator

An XQuery query containing a set operator can be transformed into an equiv-
alent query where the expression is decomposed and contains a let clause with
two canonized expressions. The return clause contains the set operator be-
tween the two expressions.

Proof: Lets take a query @. If the query @) does not contain a set operator
between two FLWR expressions, then it is known as canonical.

When a query @ contains n+1 set operators between two expressions (others
than variables), using the canonization lemmas, we can say that the two expres-
sions are canonical. Lets take £ the set operator defined as {union, intersect,
except } (union, intersection, difference), then the table 9 illustrates the four
transformation possibilities:

PR SM

Rapport de recherche

3.3 Conditional operators

10

| Set expression

| Canonized expression

| Comments

(expri & expra)

let $t3 := for $¢1 in expry
for $t5 in exprs
return ($t1 € $t2)

each expression is defined by
a new variable. Those are
linked by the operator.

(expri € expra)/P

let $t3 := for $¢1 in expry
for $t3 in expra
return ($t1 € $t2)
... $tz/P

The expression is broken up.

1) the set operator

2) the expression is replaced by
the variable.

SXP(P1 € P)

for $t, in XP

let $t5 := for $t1 in $t. /Py
for $t2 in $t. /P>
return ($t1 € $t2)

A new variable is created.
Apply the set operator (rule 1)
on the new variable

SXP(P & P)/Ps

for $t, in XP
let $t5 := for $t1 in $t. /Py
fOI‘ $t2 in $t2/P2

Use the second and third
decomposition rule on set
expressions between X P et Ps

return ($t1 € $t2)

.. $ts/P

Table 9: Transformation of different set expressions

Thus, a query @ that contains n+1 set operators between two expressions can
be rewritten with n set operators. If there are no set operators, it is canonical.
Then, recursively, any query) can be canonized without set operators.

Here an canonization example of a set expression:

| XQuery query | Canonized form

let $i3 =
for $i4 in /catalog
for $is in /review
return ($i; | $iz)

for $i in $iz/book

return $i/title

for $i in (/catalog

| /review)/book
return $i/title

Table 10: Canonization of a set expression

In table 10, the for clause contains a union ”|” between two sets. The first
set is /catalog and the second one /review. On each one, the book element
is selected. The title is then projected for each book. The canonization of the
union operator (shortened ”|”) gives a let clause ($i3) containing two expressions
$i; and $is. Each one is defined by a for clause on expected paths. The let
clause $i3 returns the union of the two variables. Then, the XML trees flow is
rebuilt by the for clause i3 on the element book. We then obtain a canonized
query where set operators are decomposed to detail each step of the procedure.

3.3 Conditional operators

Conditional operators bring operational treatments on XML documents. In-
deed, results of conditional operators depend on a given constraint. Then, two
different results are possible, the first one if the constraint returns true, the

PR SM

Rapport de recherche

3.4 Sequences 11

second one else. In the possible results, we can find XPath expressions, nested
queries, tags or strings. In the case of nested queries, it is then necessary to
canonize them to create a single canonized form.

Lemma 3.3 : Conditional Operators
An XQuery query containing a conditional operator (if/then/else) and a

nested query, this one can be transformed into an equivalent query where
the nested query will be declared in a clause let.

This lemma can be demonstrated in the same way of unnested queries [2]
(section 2.3). Thus, recursively, we are being able to show that any query
containing a nested query in a conditional operator can be canonized.

Here is a canonization example of a query with a conditional operator whose
result is a nested query:

| XQuery query | Canonized form |

for $i in /catalog/book
let §1 := for $j in $i//title return $j

for $i in /catalog/book
return

')) N ” return
{if contains ($i/author, "Hobb”) {if contains ($i/author, "Hobb”)
then (for $j in $i//title return $j) then ($1) ,

else ($i/author)}

else ($i/author)}

Table 11: Canonization example of conditional operators

In table 11, a conditional operator is declared in the return clause with a
constraint on the author’s name that must contain the word Hobb. If the word
is contained, the nested query $j must return the titles of this book, if not, the
author is returned.

Canonization of conditional operators moves the nested query into a let
clause. The new variable $ replaces the nested query in the conditional clause
to become a canonized query.

3.4 Sequences

Sequences are sets of elements on which operations are applied. Indeed, when
a constraint is applied on a sequence using brackets (XPath), the constraint is
applied on the set of the trees indicated by XPath (and not on each one). This
operation gathers sets of trees, and then applies the constraint to this one.

Lemma 3.4 : Sequences
An XQuery query containing a sequence can be rewritten in an equivalent

query without sequences. Each sequence is translated in a let clause on which
operations are put.

PR SM

Rapport de recherche

3.5 Functions 12

Sequences behave like filters inside XPaths. So, the demonstration is similar
to the one of filter in the canonization lemma (2.3.1) of [2]. Thus any sequence
expression is declared in a let clause, generating a new variable that could be
used in the remaining query.

| XQuery query | Canonized form
let $iy := for $x in /catalog/book
return $x

for $i in (/catalog/book)|2]

return $i/title for $i in $iy

where $i/position() ==
return $i/title

Table 12: Example of sequences canonization
In table 12, we can see a sequence defined in the for clause. The book set
on catalogs is aggregated. Then the query selects only the second book element
(and not the second book of each catalog). Then, the title of this book is
projected. The canonization step produces a let clause in which the for clause
is declared on required elements. Then, the new variable is used in the for
clause $¢ with a constraint on position. Finally, the title is returned.

3.5 Functions

| XQuery query | Canonized form

declare function local:section
. *
fo(r$éjaisne}$eir/r{)e;1§1({)) as element ()* { (3i as element()) as element ()*

return . .
<book> for $j in $i/book

(8i/title} let $1 := (for $s in $i/section/title

{for $s in $i/section/title return <Sec?[1§n/j 60}

return <section> AN
{$s/text()} < /section>)

< / i n>} return
Sectio <book> {8j/title} {81} </book>

declare function local:section

</book>

for $f in doc("catalog.xml”)/catalog

for $f in doc("catalog.xml”)/catalog return local:section(Sf)

return local:section($f)

Table 13: Function transformation
Function definition is useful to define a query that could be re-used many
times, or to define queries with parameters. In XQuery, functions take param-
eters in input and a single set in output. Inputs and output are typed. Indeed,
those cover main sets of values. The canonization step of functions only takes

Rapport de recherche

